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The so-called diluted-random-cluster model may be viewed as a random-cluster repre-
sentation of the Blume–Capel model. It has three parameters, a vertex parameter a, an
edge parameter p, and a cluster weighting factor q. Stochastic comparisons of measures
are developed for the ‘vertex marginal’ when q ∈ [1, 2], and the ‘edge marginal’ when
q ∈ [1,∞). Taken in conjunction with arguments used earlier for the random-cluster
model, these permit a rigorous study of part of the phase diagram of the Blume–Capel
model.
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1. INTRODUCTION

The Ising model is one of the most studied models of statistical physics. It has
configuration space {−1,+1}V where V is the vertex set of the (finite) graph G in
question, and has Hamiltonian

H(σ ) = −J
∑

〈x,y〉
σxσy − h

∑

x∈V

σx , σ ∈ {−1,+1}V .

The first summation is over all (unordered) pairs of nearest neighbours, and J ∈
[0,∞), h ∈ R. The Ising probability measure µ on {−1,+1}V is given by

µ(σ ) = 1

Z I
e−βH(σ ), σ ∈ {−1,+1}V ,

where Z I is the appropriate normalizing constant. Here, β = 1/(kT ) where k is
Boltzmann’s constant and T is temperature.
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It is standard that the Ising measure may be extended to a probability measure
on the configuration space associated with an infinite graph. For physical and
mathematical reasons, it is convenient that this graph have a good deal of symmetry,
and it is usual to work with the d-dimensional hypercubic lattice Z

d , where d ≥ 2.
In such a case, the model undergoes a phase transition, and this is the main
phenomenon of interest in the theory. This transition is known to be of second-
order (continuous) when d = 2 or d ≥ 4, and is believed to be of second-order
when d = 3 also. See Refs. 1, 4, 21.

The Ising model has two local states, namely ±1. This may be generalized
to any given number q ∈ {2, 3, . . .} of local states by considering the so-called
Potts model introduced in 1952, see Ref. 40. The Potts phase transition is richer
in structure than that of the Ising model, in that it is of first-order (discontinuous)
if q is sufficiently large. See Refs. 28, 35, 36.

In 1966, Blume introduced a variant of the Ising model, see Ref. 9, with
the physical motivation of studying magnetization in Uranium Oxide, UO2, at a
temperature of about 30◦K. The Hamiltonian was given by

H(σ ) = −J
∑

〈x,y〉
σxσy + D

∑

x∈V

σ 2
x − h

∑

x∈V

σx , σ ∈ {−1, 0,+1}V , (1.1)

where J, D, h are constants. The probability of a configuration σ was taken
proportional to e−βH(σ ), β = 1/(kT ). Capel(13–15) used molecular field approxi-
mations to study the ferromagnetic case J > 0. A special case is the system with
zero external-field, that is, h = 0. For a regular graph with vertex degree δ, Capel
calculated that there is a first-order phase transition when 1

3 Jδ log 4 < D < 1
2 Jδ,

and a second-order phase transition when D < 1
3 Jδ log 4. For D > 1

2 Jδ he pre-
dicted that zero states would be dominant. These non-rigorous results have led to
a certain amount of interest in the Blume–Capel model. According to the physics
literature, there is a first-order transition even in the low-dimensional setting of
Z

2. Indeed, in the phase diagram with parameters (J, D), there is believed to be
a so-called ‘tri-critical point,’ at which a line of phase transitions turns from first-
to second-order.

The so-called ‘random-cluster representation’ of Fortuin and Kasteleyn pro-
vides one of the basic methods for studying Ising and Potts models, see Refs. 25–
28 and the references therein. Our target in the current paper is to demonstrate
a random-cluster representation for the Blume–Capel model with h = 0. One of
the principal advantages of this approach is that it allows the use of stochastic
monotonicity for the corresponding random-cluster model. Thus, we shall explore
monotonicity and domination methods for the ensuing measure, and shall deduce
some of the structure of the Blume–Capel model on Z

d . It may be possible to de-
rive some, at least, of our results by other methods such as Pirogov–Sinai theory.
One virtue of the current approach is relative simplicity.
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There is some related literature. An apparently different proposal for a
random-cluster representation of the Blume–Capel model is discussed in Ref. 10,
where the target was to implement a Monte-Carlo method of Swendsen–Wang
type.(43) Of considerably more relevance is the Potts lattice gas of Refs. 5, 17
to which we return near the start of Sec. 3. We note the early paper of Hu,(34)

who considered a random-cluster representation for the Ising model with general
ferromagnetic cell interaction on a square lattice.

For further results on the Blume–Capel model, see Refs. 7, 8, 11, 18, 23, 33,
39. The usual random-cluster model is summarized in Refs. 27, 28.

The Blume–Capel model has three local states. There is an extension to a
model with local state space {0, 1, 2, . . . , q} where q ≥ 1. We introduce this new
model in Sec. 3, where we dub it the Blume–Capel–Potts (BCP) model. We show
there how to construct a random-cluster representation of the BCP model, and we
call the corresponding model the ‘diluted-random-cluster’ (DRC) model. In the
BCP model, vertices with state zero do not interact further with their neighbours,
and the states of the other vertices have a Potts distribution. In the diluted-random-
cluster model, the zero-state vertices of the DRC model are removed, and the
remaining graph is subject to a conventional random-cluster model.

The diluted-random-cluster model is formulated on a finite graph in Sec. 3,
and with boundary conditions on a (hyper)cubic lattice in Sec. 4. In Sec. 5,
we establish stochastic orderings of measures, and we use these to study phase
transitions. There are two types of stochastic ordering. In Sec. 5, we study the
process of vertex-dilution, and we show that the set of remaining vertices has a
law which is both monotonic and satisfies stochastic orderings with respect to
different parameter values. In Sec. 6, we consider the set of open edges after
dilution, and we prove stochastic orderings for the law of this set. The results so
far are for finite graphs only.

The thermodynamic limit is taken in two steps, in Sec. 7. We prove first
the existence of the infinite-volume limit of the vertex-measure, and the infinite-
volume limits of the full measure and of the BCP measure follow for 1 ≤ q ≤ 2.
As in the case of the random-cluster model, a certain amount of uniqueness may be
obtained using an argument of convexity of pressure. The comparison results for
finite graphs carry through to infinite graphs, and enable a rigorous but incomplete
study of part of the phase diagram of the Blume–Capel model. This is summarized
in Secs. 8 and 9, where it is shown that the rigorous theory of the q = 1 case gives
support for the conjectured phase diagram of the Blume–Capel model.

2. NOTATION

A finite graph G = (V, E) comprises a vertex-set V and a set E of edges
e = 〈x, y〉 having endvertices x and y. We write x ∼ y if 〈x, y〉 ∈ E , and we call
x and y neighbours in this case. For simplicity, we shall assume generally that G
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has neither loops nor multiple edges. The degree degx of a vertex x is the number
of edges incident to x.

Let d ≥ 2. Let Z = {. . . ,−1, 0, 1, . . .}, and let Z
d be the set of all d-vectors

of integers. For x ∈ Z
d , we write x = (x1, x2, . . . , xd ), and we define

|x | =
d∑

i=1

|xi |.

We write x ∼ y if |x − y| = 1, and we let E
d be the set of all unordered pairs

〈x, y〉 with x ∼ y. The resulting graph L
d = (Zd , E

d ) is called the d-dimensional
hypercubic lattice.

Substantial use will be made later of the Kronecker delta,

δu,v =
{

1 if u = v,

0 if u 
= v.

3. THE BCP AND DRC MEASURES

It is shown in this section how the Blume–Capel measure on a graph may
be coupled with a certain ‘diluted-random-cluster’ measure. The Blume–Capel
model has two non-zero local states, labelled ±1. Just as in the Ising/Potts case,
the corresponding random-cluster representation is valid for a general number, q
say, of local states. Therefore, we first define a ‘Potts extension’ of the Blume–
Capel model with zero external-field.

Let G = (V, E) be a finite graph with neither loops nor multiple edges. Let
q ∈ {1, 2, 3, . . .}, and let �q = {0, 1, 2, . . . , q}V . For σ = (σx : x ∈ V ) ∈ �q , we
let Eσ be the subset of E comprising all edges e = 〈x, y〉 with σx 
= 0, σy 
= 0.
After a change of notation, the Blume–Capel measure with zero external-field
amounts to the probability measure on �2 given by

π2(σ ) = 1

ZBC
exp

[
−K |Eσ | + 2K

∑

e∈E

δe(σ ) + �
∑

x∈V

δσx ,0

]
, σ ∈ �2, (3.1)

where

δe(σ ) = δσx ,σy (1 − δσx ,0), e = 〈x, y〉 ∈ E .

Note that

2δe(σ ) = σxσy + 1 for e = 〈x, y〉 and σx , σy ∈ {−1,+1},
and this accounts for the exponent in (3.1). The constants K and � are to be
regarded as parameters of the model. We now define the ‘Blume–Capel–Potts
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(BCP)’ probability measure πq on �q by

πq (σ ) = 1

ZBCP
exp

[
−K |Eσ | + 2K

∑

e∈E

δe(σ ) + �
∑

x∈V

δσx ,0

]
, σ ∈ �q ,

(3.2)

where ZBCP = ZBCP
K ,�,q is the normalizing constant. We point out that the value

q = 1 is permitted in the above definition of πq .
Equation (3.2) may be compared with the corresponding definition of the

Potts lattice gas, see equation (2.1) of Ref. 5 and equation (3.11) of Ref. 17. The
BCP measure is a special case of the Potts lattice gas in which the parameters J
and κ of Ref. 5 are related by J = −2κ > 0. The analyses of Refs. 5, 16, 17 have
something in common with the current work in that they include random-cluster
representations of the Potts lattice gas. Ref. 5 differs from the current work in the
vital regard that the parameters of the Blume–Capel measure (3.2) do not satisfy
the assumptions of Ref. 5. The BCP model is a special case of the non-super-
attractive lattice gas of Refs. 16, 17. The graphical representation of the current
paper is related to that of Ref. 17, and some of the stochastic inequalities obtained
here may be extended to the models considered in Ref. 17. We have chosen to
work with the Blume–Capel formulation (3.2), since we wish to concentrate on
the comparisons of Secs. 8 and 9. The stochastic (FKG) orderings considered here
have a superficial resemblance to those of Ref. 38 but the underlying ordering of
the local state space is different.

We turn now to the random-cluster representation of the BCP measure. The
support of the corresponding random-cluster-type measure is a subset of the
product � × 	 where � = {0, 1}V , and 	 = {0, 1}E . For ψ = (ψx : x ∈ V ) ∈ �,
we let

Vψ = {x ∈ V : ψx = 1}, Eψ = {〈x, y〉 ∈ E : x, y ∈ Vψ }.
Let ω = (ωe : e ∈ E) ∈ 	. We say that ω and ψ are compatible if ωe = 0 whenever
e /∈ Eψ , and we write � for the set of all compatible pairs (ψ,ω) ∈ � × 	. Let
θ = (ψ,ω) ∈ �. A vertex x ∈ V is called open (or ψ-open) if ψx = 1, and is
called closed otherwise. An edge e is called open (or ω-open) if ωe = 1, and closed
otherwise. We write η(ω) for the set of ω-open edges, and note that (ψ,ω) ∈ � if
and only if η(ω) ⊆ Eψ . For θ = (ψ,ω) ∈ � and e /∈ Eψ , we say that e has been
deleted.

Let θ = (ψ,ω) ∈ �. The connected components of the graph (Vψ, η(ω)) are
called open clusters, and their cardinality is denoted by k(θ ).

The parameters of the random-cluster measure in question are a ∈ (0, 1], p ∈
[0, 1), q ∈ (0,∞), and in addition we write r = √

1 − p. The diluted-random-
cluster measure with parameters a, p, q is defined to be the probability measure
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on � × 	 given by

φ(θ ) = 1

ZDRC
r |Eψ |qk(θ)

∏

x∈V

(
a

1 − a

)ψx ∏

e∈Eψ

(
p

1 − p

)ωe

(3.3)

for θ = (ψ,ω) ∈ �, and φ(θ ) = 0 otherwise, where ZDRC = ZDRC
a,p,q is the normal-

izing constant. The above formula may be interpreted when a = 1 as requiring
that all vertices be open. We note for future use that the projection of φ onto the
first component � of the configuration space is the probability measure satisfying

�(ψ) =
∑

ω∈	

φ(ψ,ω) ∝ r |Eψ |
(

a

1 − a

)|Vψ |
ZRC

p,q (Vψ, Eψ ), ψ ∈ �, (3.4)

where

ZRC
p,q (W, F) =

∑

ω∈{0,1}F

qk(ω)

(
p

1 − p

)|η(ω)|
(3.5)

denotes the partition function of the random-cluster model on G = (W, F) with
parameters p, q. When F = ∅, we interpret ZRC

p,q (W, F) as qk(W,F), where k(W, F)
is the number of components of the graph. We speak of � as the ‘vertex-measure’
of φ.

The diluted-random-cluster and BCP measures are related to one another in
very much the same way as are the random-cluster and Potts measures, see Ref. 28.
This is not quite so obvious as it may first seem, owing to the factor r |Eψ | in the
definition of φ. We will not labour the required calculations since they follow
standard routes, but we present the coupling theorem, and we will summarize
some of the necessary facts concerning the conditional measures.

We turn therefore to a coupling between the diluted-random-cluster and BCP
measures. Let � ∈ R, K ∈ [0,∞), q ∈ {1, 2, 3, . . .}, and let a and p satisfy

p = 1 − e−2K ,
a

1 − a
= e−�. (3.6)

We will define a probability measure µ on the product space �q × � × 	. This
measure µ will have as support the subset S ⊆ �q × � × 	 comprising all triples
(σ,ψ, ω) such that:

(i) (ψ,ω) ∈ �,
(ii) ψx = 1 − δσx ,0 for all x ∈ V , that is, ψx = 0 if and only if σx = 0, and

(iii) for all e = 〈x, y〉 ∈ E , if σx 
= σy then ωe = 0.
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We define µ by

µ(σ,ψ, ω) =
⎧
⎨

⎩

1
Z r |Eψ | ∏

x∈V

(
a

1−a

)ψx
∏

e∈Eψ

(
p

1−p

)ωe

if (σ,ψ, ω) ∈ S,

0 otherwise.

Theorem 3.7. Let q ∈ {1, 2, 3, . . .}, let � ∈ R, K ∈ [0,∞) and let a, p satisfy
(3.6). The marginal measures of µ on �q and on � × 	, respectively, are the BCP
and diluted-random-cluster measures with respective parameters K ,�, q and a,
p, q.

Proof: Let σ ∈ �q . We fix ψ by ψx = 1 − δσx ,0 for all x ∈ V , so that Eψ = Eσ .
By (3.6),

∏

x∈V

(
a

1 − a

)ψx

= exp

[
−�

∑

x∈V

(1 − δσx ,0)

]
.

By summing over all ω such that (σ,ψ, ω) ∈ S,

∑

ω

r |Eψ | ∏

e∈Eψ

(
p

1 − p

)ωe

= r |Eψ | ∏

e∈Eψ

[
1 +

(
p

1 − p

)
δe(σ )

]

= exp

[
−K |Eψ | + 2K

∑

e∈E

δe(σ )

]
.

By (3.2),
∑

(ψ,ω)∈�

µ(σ,ψ, ω) ∝ πq (σ ), σ ∈ �q .

Equality must hold here, since each side is a probability mass function. This proves
that the marginal of µ on �q is indeed the BCP measure πq .

Turning to the second marginal, we fix θ = (ψ,ω) ∈ �, and let S(θ ) be the
set of all σ ∈ �q such that (σ,ψ, ω) ∈ S. We have that σx = 0 if and only if
ψx = 0. The only further constraint on σ is that it is constant on each cluster of
(Vψ, η(ω)). There are k(θ ) such clusters, and therefore |S(θ )| = qk(θ). It follows
that

∑

σ

µ(σ,ψ, ω) = φ(θ ), θ = (ψ,ω) ∈ �,

as required. �
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We make some observations based on Theorem 3.7 and the method of proof.
First, subject to (3.6),

ZBCP
K ,�,q = ZDRC

a,p,q · e|V |�. (3.8)

Secondly, the conditional measure of µ, given the pair (ψ,ω) ∈ � × 	, is that
obtained as follows:

(a) for x ∈ V, σx = 0 if and only if ψx = 0,
(b) the spins are constant on every cluster of the graph (Vψ, η(ω)), and each

such spin is uniformly distributed on the set {1, 2, . . . , q},
(c) the spins on different clusters are independent random variables.

Thirdly, the conditional measure of µ, given the spin vector σ ∈ �q , is that obtained
as follows:

(i) for x ∈ V, ψx = 0 if and only if σx = 0,
(ii) (ψ,ω) ∈ �,

(iii) the random variables (ωe : e ∈ Eψ ) are independent,
(iv) for e = 〈x, y〉 ∈ Eψ, ωe = 0 if σx 
= σy , and ωe = 1 with probability p if

σx = σy .

In particular, conditional on the set {x ∈ V : σx = 0}, the joint distribution of σ

and ω is the usual coupling of the Potts and random-cluster measures on the graph
Gψ = (Vψ, Eψ ).

As two-point correlation function in the BCP model, we may take the function

τq (x, y) = πq (σx = σy 
= 0) − 1

q
πq (σxσy 
= 0), x, y ∈ V . (3.9)

This is related as follows to the two-point connectivity function of the diluted-
random-cluster model. For x, y ∈ V , we write x ↔ y if there exists a path of
ω-open edges joining x to y. Similarly, for A, B ⊆ V , we write A ↔ B if there
exist a ∈ A and b ∈ B such that a ↔ b.

Theorem 3.10. Let � ∈ R, K ∈ [0,∞), q ∈ {1, 2, . . .}, and let a, p satisfy (3.6).
The corresponding diluted-random-cluster measure φ and BCP measure πq on
the finite graph G = (V, E) are such that

τq (x, y) = (1 − q−1)φ(x ↔ y), x, y ∈ V .

The proof follows exactly that of the corresponding statement for the random-
cluster model, see for example Ref. 28.

Two particular values of q are special, namely q = 1, 2. From the above,
the diluted-random-cluster measure with q = 2 corresponds to the Blume–Capel
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measure. Theorem 3.7 is valid with q = 1 also. The BCP model with q = 1 has
two local states labelled 0 and 1. By (3.2), the Hamiltonian may be written as

Hq (σ ) = K |Eσ | − 2K
∑

e∈E

δe(σ ) − �
∑

x∈V

δσx ,0

= −�|V | − K |Eσ | + �
∑

x∈V

σx

= −�|V | − K
∑

e=〈x,y〉∈E

σxσy + �
∑

x∈V

σx , σ ∈ �1.

We make the change of variables ηx = 2σx − 1, to find that

Hq (σ ) = −1

2
�|V | − 1

4
K |E | − J

∑

e=〈x,y〉∈E

ηxηy −
∑

x∈V

hxηx ,

where J = 1
4 K and hx = 1

4 (K degx − 2�). That is, we may work with the altered
Hamiltonian

H′
q (σ ) = −J

∑

e=〈x,y〉∈E

ηxηy −
∑

x∈V

hxηx , (3.11)

which is recognised as that of the Ising model with edge-interaction J and ‘local’
external field (hx : x ∈ V ). If G is regular with (constant) vertex-degree δ, then
hx = h = 1

4 (K δ − 2�) for all x ∈ V . That is, the BCP model with q = 1 is, after
a re-labelling of the local states 0, 1, an Ising model with edge-interaction J and
external field h. A great deal is known about this model, and we shall make use of
this observation later.

4. THE LATTICE DRC MODEL

Until further notice, we shall study the diluted-random-cluster model rather
than the BCP model, and thus we take q to be a positive real (number). The
model has so far been defined on a finite graph only. In order to pass in Sec. 7 to
the infinite-volume limit on L

d , we shall next introduce the concept of boundary
conditions.

Let V be a finite subset of Z
d , and let E be the subset of E

d comprising all
edges having at least one endvertex in V. We write � = (V, E), noting that �

is not a graph since it contains edges adjacent to vertices outside V. Any such
� is called a region. The corresponding graph �+ = (V +, E) is defined as the
subgraph of L

d induced by E. We write ∂� = V +\V . The lattice L
d is regular

with degree δ = 2d.
Let � = {0, 1}Z

d
and 	 = {0, 1}E

d
. Let � be the set of compatible vertex/

edge configurations (ψ,ω) ∈ � × 	 satisfying η(ω) ⊆ E
d
ψ . Each λ = (κ, ρ) ∈ �
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may be viewed as a boundary condition on the region �, as follows. Let �λ
�

be the subset of � containing configurations that agree with λ on L
d\�, in that

�λ
� contains all (ψ,ω) with ψx = κx for x /∈ V, ωe = ρe for e /∈ E . Let φλ

�,a,p,q
denote the diluted-random-cluster measure on � with boundary condition λ, that
is,

φλ
�,a,p,q (θ ) = 1

ZDRC
r |Eψ |qk(θ,�)

∏

x∈V

(
a

1 − a

)ψx ∏

e∈Eψ

(
p

1 − p

)ωe

, (4.1)

if θ = (ψ,ω) ∈ �λ
�, and φλ

�,a,p,q (θ ) = 0 otherwise. Here, Eψ = {〈x, y〉 ∈ E :
ψx = ψy = 1}, k(θ,�) is the number of open clusters of (Zd

ψ, η(ω)) that intersect

V +, and ZDRC = ZDRC
�,λ,a,p,q is a normalizing constant. See (3.3), and recall that

r = √
1 − p.

The probability measure φλ
�,a,p,q is supported effectively on the product �V ×

	E where �V = {0, 1}V and 	E = {0, 1}E . We write �λ
�,a,p,q for its marginal (or

‘projected’) measure on the first coordinate {0, 1}V of this space, given as follows.
Let λ = (κ, ρ) ∈ �, let � = (V, E) be a region, and let �λ

� be the set of all ψ ∈ �

that agree with κ off V. For ψ ∈ �, let �(ψ) denote the subgraph of �+ induced
by the ψ-open vertices. Suppose ψ ∈ �λ

�. Let ZRC
λ,p,q (�(ψ)) denote the partition

function of the random-cluster model on �(ψ) with boundary condition λ, see
(3.5). (This boundary condition is to be interpreted as: two vertices u, v ∈ V + are
deemed to be connected off �+ if there exists a path from u to v of ρ-open edges
of E

d\E .) As in (3.4),

�λ
�,a,p,q (ψ) =

∑

ω∈	E

φλ
�,a,p,q (ψ,ω)

∝ r |Eψ |
(

a

1 − a

)|Vψ |
ZRC

λ,p,q (�(ψ)), (4.2)

for ψ ∈ �V , where Vψ = {v ∈ V : ψv = 1}. There is a slight abuse of notation
here, in that ψ has been used as a member of both � and �V .

Two especially interesting situations arise when p = 0 and/or q = 1.

(a) Product measure. If p = 0 then φλ
�,a,p,q is a product measure, and may

therefore be extended to a product measure φa,0,q on L
d under which each ver-

tex is open with probability qa/(1 − a + qa), and each edge is almost-surely
closed. There exists φa,0,q -almost-surely, an infinite open vertex-cluster (respec-
tively, infinite closed vertex-cluster) if qa/(1 − a + qa) > psite

c (respectively,
(1 − a)/(1 − a + qa) > psite

c ), where psite
c denotes the critical probability of site

percolation on L
d .

(b) Ising model with external field. Let q = 1, and recall from the end of
Sec. 3 that the BCP model is essentially an Ising model with edge-interaction
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J = 1
4 K and local external field hx = 1

4 (K degx − 2�). For the sake of illustration,
consider the box Bn = [−n, n]d of L

d with periodic boundary conditions, so that
degx = δ = 2d for all x. Then

J = −1

8
log(1 − p), h = 1

2
(K d − �) = 1

2
log

(
a

(1 − a)(1 − p)d/2

)
. (4.3)

On passing to the limit as n → ∞, we obtain an infinite-volume Ising model
with parameters J, h. If we restrict ourselves to pairs a, p such that h = 0, there is a
critical value Kc(d) of K given by Kc(d) = −2 log(1 − πc) where πc = πc(d) is the
critical edge-parameter of the random-cluster model on L

d with cluster-weighting
parameter 2. Rewritten in terms of a and p, the phase diagram possesses a special
point (ā, p̄), where

ā = (1 − πc)2d

1 + (1 − πc)2d
, p̄ = 1 − (1 − πc)4. (4.4)

By a consideration of the associated random-cluster measure or otherwise, we
deduce that there is a line of first-order phase transitions along the arc

a

1 − a
= (1 − p)d/2, p̄ < p < 1. (4.5)

To the left (respectively, right) of this arc in (a, p) space (see Figure 1 for the case
d = 2), there is an infinite cluster of 0-state (respectively, 1-state) vertices. As the
arc is crossed from left to right, there is a discontinuous increase in the density
of the infinite 1-state cluster. Related issues concerning the percolation of ±-state
clusters in the zero-field Ising model are considered in Ref. 2.

We note when d = 2 that πc(2) = √
2/(1 + √

2), so that

ā = 1

1 + (1 + √
2)4

, p̄ = 1 − (1 +
√

2)−4. (4.6)

5. STOCHASTIC ORDERINGS OF VERTEX-MEASURES

Many of the results of this section have equivalents for general finite graphs,
but we concentrate here on subgraphs of the lattice L

d = (Zd , E
d ). While the route

followed here is fairly standard, some of the calculations are novel. The vertex-
measure �λ

�,a,p,q plays an important part in the stochastic orderings relevant to the
BCP model, and we turn next to its properties, beginning with a reminder about
orderings.

Let I be a finite set, and let � = {0, 1}I be viewed as a partially ordered set.
For J ⊆ I and σ ∈ �, we write σ J for the configuration that equals 1 on J and
agrees with σ off J. If J = {i} or J = {i, j} we may abuse notation by removing
the braces. Let µ1, µ2 be probability measures on �. We write µ1 ≤st µ2, and
say that µ1 is stochastically dominated by µ2, if µ1( f ) ≤ µ2( f ) for all increasing
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functions f : � → R. A probability measure µ on � is said to be strictly positive
if µ(σ ) > 0 for all σ ∈ �. If µ1, µ2 are strictly positive, then µ1 ≤st µ2 if the pair
satisfies the so-called Holley condition,

µ2(σ1 ∨ σ2)µ1(σ1 ∧ σ2) ≥ µ1(σ1)µ2(σ2), σ1, σ2 ∈ �. (5.1)

Here, ∨ denotes the coordinatewise maximum, and ∧ the coordinatewise mini-
mum. It is standard (see Ref. 28, Sec. 2.1) that it suffices to check (5.1) for pairs
of the form (σ1, σ2) = (σ i , σ ) and (σ1, σ2) = (σ i , σ j ), for σ ∈ � and i, j ∈ I .

A probability measure µ on � is said to be positively associated if

µ(A ∩ B) ≥ µ(A)µ(B)

for all increasing events A, B ⊆ �. For τ ∈ � and J ⊆ I , let �τ
J be the subset

of � containing all σ ∈ � with σi = τi for i 
∈ J . The measure µ is said to be
strongly positively associated if, for all pairs τ, J , the conditional measure, given
�τ

J , is positively associated when viewed as a measure on {0, 1}J . The measure µ

is called monotonic if, for all i ∈ I, µ(σi = 1|�τ
i ) is a non-decreasing function of

τ . It is standard (see Ref. 28, Sec. 2.2) that a strictly positive probability measure
µ on � is strongly positively associated (respectively, monotonic) if and only if it
satisfies the so-called FKG condition:

µ(σ1 ∨ σ2)µ(σ1 ∧ σ2) ≥ µ(σ1)µ(σ2), σ1, σ2 ∈ �. (5.2)

Furthermore, it suffices to check (5.2) for pairs of the form (σ1, σ2) = (σ i , σ j ),
for σ ∈ � and i, j ∈ I . Further discussions of the FKG and Holley inequalities
may be found in Refs. 22, 28, 32.

The proofs of the following theorems will be found later in this section.

Theorem 5.3. Let � = (V, E) be a region, let λ ∈ �, and let a ∈ (0, 1), p ∈
[0, 1). The probability measure �λ

�,a,p,q is strongly positively associated, and
hence monotonic, if q ∈ [1, 2].

The condition q ∈ [1, 2] is important. If q > 2, then strong positive-
association does not hold for all p ∈ (0, 1). The conclusion would be similarly
false for the full diluted-random-cluster measure even for q ∈ [1, 2]. For example,
let G be the graph with exactly two vertices x, y joined by a single edge e, and
consider the associated measure φa,p,q with a, p ∈ (0, 1) and q ∈ (0,∞). Then,
with r = √

1 − p,

φ(ψy = 1|ψx = 0, ωe = 0) = qa

qa + 1 − a
,

φ(ψy = 1|ψx = 1, ωe = 0) = qar

qar + 1 − a
.
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The first term exceeds the second strictly, and hence φa,p,q is not monotone on the
product space {0, 1}V × {0, 1}E .

We prove next that �λ
�,a,p,q is increasing in λ, so long as q ∈ [1, 2].

Theorem 5.4. Let � = (V, E) be a region, and let a ∈ (0, 1), p ∈ [0, 1) and
q ∈ [1, 2]. If λ1 ≤ λ2 then �

λ1
�,a,p,q ≤st �

λ2
�,a,p,q .

The two theorems above will be proved by checking certain inequalities
related to (5.1) and (5.2). It is convenient to make use of a subsidiary proposition for
this, and we state this next, beginning with some notation. For a region � = (V, E),
we abbreviate to �i the marginal (or projected) measure on the space �V of
the diluted-random-cluster measure φ

λi
�,ai ,pi ,qi

. We abbreviate to µi
�,ψ the usual

random-cluster measure on �(ψ) with boundary condition �i and parameters
(pi , qi ). For w ∈ Z

d , let Iw ⊆ 	 be the event that w has no incident ω-open edges.

Proposition 5.5. Let λ1, λ2 ∈ �, ai ∈ (0, 1), pi ∈ [0, 1) for i = 1, 2, and qi ∈
[1,∞), q2 ∈ [1, 2]. Let ψ ∈ �, let � = (V, E) be a region, and let x ∈ V be such
that ψx = 0. Let b = b(x, ψ) denote the number of edges of E of the form 〈x, z〉
with ψz = 1. If

q2

(
a2

1 − a2

)
(1 − p2)b/2

µ2
�,ψ x (Ix )

≥ q1

(
a1

1 − a1

)
(1 − p1)b/2

µ1
�,ψ x (Ix )

, (5.6)

then

�2(ψ x )�1(ψ) ≥ �1(ψ x )�2(ψ), (5.7)

�2(ψ x,y)�1(ψ) ≥ �1(ψ x )�2(ψ y), y ∈ V \Vψ, y 
= x . (5.8)

We examine next the monotonicity properties of �λ
�,a,p,q as a, p, q vary.

Recall that δ = 2d.

Theorem 5.9. Let � = (V, E) be a region, and let λ ∈ �. Let ai ∈ (0, 1), pi ∈
[0, 1), and qi ∈ [1, 2] for i = 1, 2, and let �i = φλ

�,ai ,pi ,q1
be as above. Each of

the following is a sufficient condition for the stochastic inequality �1 ≤st �2:

(i) that a1 ≤ a2, p1 ≤ p2, and q1 = q2,
(ii) that

q2

(
a2

1 − a2

)
≥ q1

(
a1

1 − a1

)
(1 − p1)−δ/2,
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(iii) that p1 ≤ p2, q1 ≥ q2, and

q2

(
a2

1 − a2

)
(1 − p2)δ/2 ≥ q1

(
a1

1 − a1

)
(1 − p1)δ/2, (5.10)

(iv) that q1 ≤ q2, (5.10) holds, and

p2

q2(1 − p2)
≥ p1

q1(1 − p1)
.

In the next section we shall pass to infinite-volume limits along increasing
sequences of regions. In preparation for this, we note two further properties of
stochastic monotonicity. The two extremal boundary conditions are the vectors
0 = (0, 0) ∈ � × 	 and 1 = (1, 1) ∈ � × 	.

Theorem 5.11. Let a ∈ (0, 1), p ∈ [0, 1), q ∈ [1, 2], and let �1,�2 be regions
with �1 ⊆ �2. Then

�0
�1,a,p,q ≤st �0

�2,a,p,q , �1
�1,a,p,q ≥st �1

�2,a,p,q .

It is noted that the boundary conditions b = 0, 1 contain information con-
cerning both vertex and edge configuration off �. By (4.2), only the external edge
configuration is in fact relevant. The above inequalities for the vertex-measures
�a,p,q imply a degree of monotonicity of the full diluted-random-cluster measure
φa,p,q . We shall not explore this in depth, but restrict ourselves to two facts for
later use.

Theorem 5.12. Let a ∈ (0, 1), p ∈ [0, 1), q ∈ [1, 2], and λ ∈ �. For any region
�, the diluted-random-cluster measure φλ

�,a,p,q is stochastically non-decreasing
in a, p, and λ.

A probability measure on a product space {0, 1}I is said to have the finite-
energy property if, for all i ∈ I , the law of the state of i, conditional on the states
of all other indices, is (almost surely) strictly positive. See Ref. 28.

Theorem 5.13. Let a ∈ (0, 1), p ∈ [0, 1), q ∈ [1, 2], λ ∈ �, and let � be a re-
gion. The probability measure �λ

�,a,p,q has the finite-energy property, and indeed,

qa

1 − a + qa
≤ �λ

�,a,p,q (Jx |Tx ) ≤ aq

aq + (1 − a)r δ
, �λ

�,a,p,q -a.s.,

where Jx ⊆ � is the event that x is open, and Tx is the σ -field of � generated by
the states of vertices other than x.
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We turn now to the proofs, and begin with a lemma.

Lemma 5.14. Under the conditions of Proposition 5.5, and with x, y ∈ V \Vψ ,

µ2
�,ψ x,y (Ix ) ≤ µ2

�,ψ x (Ix )r f
2 ,

where r2 = √
1 − p2 and f ∈ {0, 1} is the number of edges of L

d with endvertices
x, y.

Proof: We note the elementary inequality

q(1 − p)

p + q(1 − p)
≤

√
1 − p, p ∈ [0, 1], q ∈ [1, 2]. (5.15)

Let B (respectively, C) be the set of b (respectively, c) edges joining x (respectively,
y) to ψ-open vertices of V +, and let F be the set of edges with endvertices
x, y. Let B0 (respectively, C0, F0) be the (decreasing) event that all edges in B
(respectively, C, F) are closed. Since a random-cluster measure with q ≥ 1 is
positively associated,

µ2
�,ψ x,y (Ix ) ≤ µ2

�,ψ x,y (B0 ∩ F0 | C0).

By an elementary property of random-cluster measures, see Ref. 28,

µ2
�,ψ x,y (B0 ∩ F0 | C0) = µ2

�\C,ψ x,y (B0 ∩ F0)

= µ2
�\C,ψ x,y (B0 | F0)µ2

�\C,ψ x,y (F0),

where �\C is obtained from � by deleting all edges in C. In �(ψ x,y)\C , the only
possible neighbour of y is x, whence, for f = |F | = 0, 1,

µ2
�\C,ψ x,y (F0) = q2(1 − p2) f

1 + (q2 − 1)(1 − p2) f
≤ (1 − p2) f/2 = r f

2 ,

where we have used (5.15) and the fact that q2 ≤ 2. Similarly,

µ2
�\C,ψ x,y (B0 | F0) = µ2

�,ψ x (B0) = µ2
�,ψ x (Ix ),

and the claim follows. �

Proof of Proposition 5.5. We prove (5.8) only, the proof of (5.7) is similar and
simpler. Inequality (5.6) implies by Lemma 5.14 that

q2

(
a2

1 − a2

)
rb+ f

2

µ2
�,ψ x,y (Ix )

≥ q1

(
a1

1 − a1

)
rb

1

µ1
�,ψ x (Ix )

, (5.16)

where f is the number of edges of L
d joining x and y. Let ZRC

λ,p,q (G) be the
partition function of the random-cluster model on a graph G with parameters p, q
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and boundary condition λ, see (3.5). We have that

µ1
�,ψ x (Ix ) = q1

ZRC
λ1,p1,q1

(�(ψ))

ZRC
λ1,p1,q1

(�(ψ x ))
, µ2

�,ψ x,y (Ix ) = q2

ZRC
λ2,p2,q2

(�(ψ y))

ZRC
λ2,p2,q2

(�(ψ x,y))
.

We substitute these into (5.16) to find that

(
a2

1 − a2

)
ZRC

λ2,p2,q2
(�(ψ x,y))ZRC

λ1,p1,q1
(�(ψ))rb+ f

2

≥
(

a1

1 − a1

)
ZRC

λ1,p1,q1
(�(ψ x ))ZRC

λ2,p2,q2
(�(ψ y))rb

1 .

Now, |V (ψ x )\V (ψ)| = 1 and |E(ψ x )\E(ψ)| = b where V (ψ) = V ∩ Z
d
ψ and

E(ψ) = E ∩ E
d
ψ , so that

(
a2

1 − a2

)|V (ψ x,y )|
ZRC

λ2,p2,q2
(�(ψ x,y))r |E(ψ x,y )|

2

×
(

a1

1 − a1

)|V (ψ)|
ZRC

λ1,p1,q1
(�(ψ))r |E(ψ)|

1

≥
(

a1

1 − a1

)|V (ψ x )|
ZRC

λ1,p1,q1
(�(ψ x ))r |E(ψ x )|

1

×
(

a2

1 − a2

)|V (ψ y )|
ZRC

λ2,p2,q2
(�(ψ y))r |E(ψ y )|

2 .

As in (4.2),

�i (ψ) =
∑

ω∈	E

φ
λi
�,ai ,pi ,qi

(ψ,ω) ∝ r |E(ψ)|
i

(
ai

1 − ai

)|V (ψ)|
ZRC

λi ,pi ,qi
(�(ψ)),

for ψ ∈ �V , and (5.8) follows. �

Proof of Theorem 5.3. We apply Proposition 5.5 with ai = a, pi = p, qi = q,
and λi = λ. Inequality (5.6) is a triviality since µ1

�,ψ = µ2
�,ψ for every ψ . By

(5.8) and the comment after (5.2), �λ
�,a,p,q satisfies the FKG condition (5.2), and

the claim follows. �

Proof of Theorem 5.4. Since λ1 ≤ λ2, µ
1
�,ψ ≤st µ2

�,ψ for every ψ ∈ �. Now,
Ix is a decreasing event, whence µ1

�,ψ (Ix ) ≥ µ2
�,ψ (Ix ). By Proposition 5.5 and the
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comment after (5.1), the �i = �
λi
�,a,p,q satisfy the Holley condition (5.1), and the

claim follows. �

Proof of Theorem 5.9. In each case, we shall apply Proposition 5.5 and appeal to
the Holley condition (5.1) and the comment thereafter. It suffices to check (5.6) for
every relevant vertex x. We recall some basic facts about random-cluster measures
to be found in, for example, Ref. 28. Let G = (W, F) be a graph and let µp,q

be the random-cluster measure on {0, 1}F with parameters p ∈ [0, 1], q ∈ [1,∞).
By the comparison inequalities,

p

p + q(1 − p)
≤ µp,q ( f is open) ≤ p, f ∈ F, (5.17)

and, if x ∈ W has degree b,

(1 − p)b ≤ µp,q (Ix ) ≤
(

1 − p

p + q(1 − p)

)b

. (5.18)

We note from (5.15) that

(
1 − p

p + q(1 − p)

)b

≤ (1 − p)b/2, p ∈ [0, 1], q ∈ [1, 2]. (5.19)

(i) We may adapt the exponential-steepness argument of Ref. 29, as in Sec. 2.5
of Ref. 28, to the decreasing event Ix to obtain, in the above notation,

d

dp
log µp,q (Ix ) ≤ − 1

p(1 − p)

∑

f : f ∼x

µp,q ( f is open), (5.20)

where the sum is over the b edges f with endvertex x. Let q ∈ [1, 2]. By (5.17),

d

dp
log µp,q (Ix ) ≤ − 1

p(1 − p)

∑

f : f ∼x

p

p + q(1 − p)
≤ − b

2(1 − p)
.

We integrate from p1 to p2 and apply to the measures µi
�,ψ to obtain that

µ2
�,ψ (Ix )

µ1
�,ψ (Ix )

≤
(

1 − p2

1 − p1

)b/2

.

Inequality (5.6) follows as required.
(ii) Inequality (5.6) follows from (5.18)–(5.19) on noting that b ≤ δ.
(iii), (iv) Under either set of conditions, µ1

�,ψ x ≤st µ2
�,ψ x , implying that

µ1
�,ψ x (Ix ) ≥ µ2

�,ψ x (Ix ). Inequality (5.6) follows on noting that b ≤ δ. �
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Proof of Theorem 5.11. These inequalities follow in the same way as for the
random-cluster measure (see Ref. 28, Sec. 4.3) using the monotonicity of �λ

�,a,p,q
for λ = 0, 1. �

Proof of Theorem 5.12. Let C ⊆ � × 	 be an increasing cylinder event. By
the coupling of Sec. 3,

φλ
�,a,p,q (C) = �λ

�,a,p,q

(
µλ

�,ψ,p,q (Cψ )
)
,

where Cψ = {ω ∈ 	 : (ψ,ω) ∈ C} and µλ
�,ψ,p,q is the random-cluster measure

on V (ψ) with boundary condition λ. Now, Cψ is an increasing event in 	,
and therefore µλ

�,ψ,p,q (Cψ ) is increasing in ψ, p, and λ. The claim follows by
Theorem 5.9(i). �

Proof of Theorem 5.13. Since q ∈ [1, 2],�λ
�,a,p,q is monotonic by Theorem

5.3. Since Jx is increasing, a lower bound for the conditional probability of Jx is
obtained by considering the situation in which all other vertices are closed. In this
case, x contributes qa/(1 − a) (respectively, 1) in (4.2) when open (respectively,
closed), and the lower bound follows.

An upper bound is obtained by considering the situation in which λ = 1,
and all vertices other than x are open and connected by open edges. This time, x
contributes no more than

r δq

(
a

1 − a

) ∑

ω∈{0,1}δ

δ∏

i=1

(
p

1 − p

)ωi

,

when open, and 1 when closed. �

6. STOCHASTIC ORDERINGS OF EDGE-MEASURES

Let G = (V, E) be a finite graph, and let φa,p,q be the diluted-random-
cluster measure on the corresponding sample space � × 	 = {0, 1}V × {0, 1}E .
Let ϒa,p,q denote the marginal measure of φa,p,q on the second component 	,

ϒa,p,q (ω) =
∑

ψ∈�

φa,p,q (ψ,ω), ω ∈ 	.

We first compare ϒ1,p1,q1 with ϒa,p2,q2 .

Theorem 6.1. Let 0 < a2 ≤ a1 = 1, p1, p2 ∈ (0, 1), q1, q2 ∈ [1,∞). Let ri =√
1 − pi , and denote by ϒi the probability measure ϒai ,pi ,qi .

(a) If q2 ≤ q1 and

1 − p2

p2
(1 + 2wδ + wδwδ−1) ≤ 1 − p1

p1
, (6.2)
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where δ is the maximum vertex-degree of G and

w j = 1

q2r j
2

(
1 − a2

a2

)
, j = 0, 1, 2, . . . , δ,

then ϒ1 ≤st ϒ2.
(b) If p1 ≥ p2 and q1 ≤ q2, then ϒ1 ≥st ϒ2.

Theorem 6.3. Let 0 < a1 ≤ a2 < 1, 0 < p1 ≤ p2 < 1, and q ∈ [1, 2]. Then
ϒa1,p1,q ≤st ϒa2,p2,q .

Proof of Theorem 6.1. (a) The quantity

w j (a, p, q) = 1

qr j

(
1 − a

a

)

may be viewed as follows. Let (ψ,ω) ∈ �, and let x ∈ V be such that ψx = 0.
Then

φa,p,q (ψ,ω) = φa,p,q (ψ x , ω)w j , (6.4)

where j = j(x, ψ) is the number of neighbours u of x such that ψu = 1. Note that
w j is increasing in j.

Suppose (6.2) holds. We will show that the measures ϒi satisfy (5.1). By the
remark after (5.1), it suffices to show that, for e, f ∈ E with e 
= f , and ω ∈ 	

with ωe = 0,

ϒ2(ωe, f )ϒ1(ω) ≥ ϒ1(ωe)ϒ2(ω f ), (6.5)

ϒ2(ωe)ϒ1(ω) ≥ ϒ1(ωe)ϒ2(ω). (6.6)

We will show (6.5) only, the proof of (6.6) is similar. We may assume that ω f = 0.
Since a1 = 1, ϒ1 is the usual random-cluster measure on G with parameters

p1 and q. Therefore,

ϒ1(ω) = ϒ1(ωe)

(
1 − p1

p1

)
qk1

1 , (6.7)

where

k1 = k(1, ω) − k(1, ωe) =
{

1 if e is an isthmus of the graph (V, η(ωe)),

0 otherwise.

For ξ ∈ 	, let K (ξ ) = {ψ : (ψ, ξ ) ∈ �} be the set of compatible ψ ∈ �. Let
e = 〈x, y〉, and write

B = {ψ ∈ � : ψ x,y ∈ K (ωe, f ), ψx = ψy = 0}.
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Then K (ω f ) is the union of

(i) {ψ x,y : ψ ∈ B}, and
(ii) {ψ x : ψ ∈ B} if y is isolated in ω f , and

(iii) {ψ y : ψ ∈ B} if x is isolated in ω f , and
(iv) B, if both x and y are isolated in ω f .

Let ψ ∈ B. By (6.4), with φi = φai ,pi ,qi ,

φ2(ψ x , ω f )

{= 0 if (ψ x , ω f ) 
∈ �,

≤ φ2(ψ x,y, ω f )wδ if (ψ x , ω f ) ∈ �,

≤ φ2(ψ x,y, ω f )wδ.

Similarly,

φ2(ψ,ω f ) ≤ φ2(ψ x , ω f )wδ ≤ φ2(ψ x,y, ω f )wδwδ−1.

Also,

φ2(ψ x,y, ω f ) = φ2(ψ x,y, ωe, f )

(
1 − p2

p2

)
qk2

2 , ψ ∈ B,

where

k2 = k(ψ x,y, ω f ) − k(ψ x,y, ωe, f ) ≤ k1.

Therefore, for ψ ∈ B,

φ2(ψ x,y, ω f ) + φ2(ψ x , ω f ) + φ2(ψ y, ω f ) + φ2(ψ,ω f )

≤ φ2(ψ x,y, ωe, f )

(
1 − p2

p2

)
qk2

2 (1 + 2wδ + wδwδ−1).

We sum over ψ ∈ B and use (6.2) and (6.7) to find as required that

ϒ1(ωe)ϒ2(ω f ) ≤ ϒ1(ωe)ϒ2(ωe, f )

(
1 − p2

p2

)
qk2

2 (1 + 2wδ + wδwδ−1)

≤ ϒ1(ωe)ϒ2(ωe, f )

(
1 − p1

p1

)
qk1

1

= ϒ1(ω)ϒ2(ωe, f ).

(b) The proof is similar but easier to that of (a), and is omitted. �

Proof of Theorem 6.3. Write φi = φai ,pi ,q . For any increasing event A ⊆ 	.

ϒ1(A) = φ1(� × A) = φ1(φ1(� × A | ψ)) = �1(µψ,p1,q (A)),
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where µψ,p,q denotes the random-cluster measure on (V, Eψ ) with parameters p
and q. Now, µψ,p1,q ≤st µψ,p2,q and µψ,p2,q (A) is non-decreasing in ψ . It follows
by Theorem 5.9(i) that �1(A) ≤ �2(A) as required. �

7. INFINITE-VOLUME MEASURES

There are two ways of moving to infinite-volume measures on the lattice
L

d = (Zd , E
d ), namely by passing to weak limits, and by the Dobrushin–Lanford–

Ruelle (DLR) formalism. The associated theory is standard for the random-cluster
model, and the same arguments are mostly valid for the diluted-random-cluster
model. We shall not repeat them here, but refer the reader to Refs. 26, 28 for the
details.

A subset of Z
d of the form Va,b = �d

i=1[ai , bi ] is called a box, and the
associated region is denoted by �a,b and called a box-region. Write B for the set
of all box-regions of L

d . For a sequence �n of box-regions, we write �n ↑ L
d if

their vertex-sets increase to Z
d . Let � = {0, 1}Z

d
,	 = {0, 1}E

d
, and let � be the

set of all compatible pairs (ψ,ω) ∈ � × 	.
We begin with a consideration of vertex-measures. Let a, p ∈ (0, 1) and

q ∈ (0,∞), and let G denote the σ -field generated by the cylinder events of
� = {0, 1}Z

d
. A probability measure � on (�,G) is called a limit vertex-measure

with parameters a, p, q, if, for some λ ∈ �,� is an accumulation point of the
family {�λ

�,a,p,q : � ∈ B}. Let Wa,p,q denote the set of all such measures, and

co Wa,p,q its closed convex hull. It is standard by compactness that Wa,p,q is
non-empty for all a, p, q.

We suppose henceforth that q ∈ [1, 2], so that we are within the domains
of validity of the comparison and positive-correlation theorems of Secs. 5 and 6.
Arguing as for random-cluster measures, any � ∈ Wa,p,q is positively associated,
and any � ∈ co Wa,p,q has the finite-energy property and satisfies the bounds of
Theorem 5.13.

We may identify two special members of Wa,p,q as follows. Let 0 = (0, 0)
∈ � × 	 and 1 = (1, 1). By positive-association in the usual way, the (monotonic)
weak limits

�b
a,p,q = lim

�↑Ld
�b

�,a,p,q , b = 0, 1,

exist. Furthermore, �0
a,p,q and �1

a,p,q are automorphism-invariant (that is, invariant
with respect to automorphisms of L

d ), and are extremal in that

�0
a,p,q ≤st � ≤st �1

a,p,q , � ∈ coWa,p,q . (7.1)

As in Ref. 6 (see also Sec. 4.3 of Ref. 28), �0
a,p,q and �1

a,p,q are tail-trivial, and
are ergodic with respect to the group Z

d of translations of L
d . Since they have the
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finite-energy property, the number I of infinite open clusters satisfies either I = 0
or I = 1,�b

a,p,q -a.s. (b = 0, 1), see Refs. 12, 28. As noted after Theorem 5.11,
the boundary conditions b = 0, 1 contain information concerning both vertex
and edge configuration off �, but only the external edge configuration is in fact
relevant.

We shall perform comparisons in Secs. 8 and 9 involving these two extremal
measures, and towards that end we note that, by weak convergence, they satisfy
the infinite-volume equivalents of Theorem 5.9.

The next two theorems concern the existence of the infinite-volume limits
for the diluted-random-cluster measure and the BCP measure, when 1 ≤ q ≤ 2.
Here is a point of notation. Let � = (V, E) be a box-region of L

d , q ∈ {1, 2}, and
s ∈ {0, 1, . . . , q}. We write π s

�,K ,�,q for the BCP measure on � with boundary
condition s. The boundary condition s = 0 corresponds to the free boundary
condition. For ψ ∈ �,µb

�,ψ,p,q denotes the random-cluster measure on (V +, Eψ )
with parameters p, q and boundary condition b. Similarly, µb

ψ,p,q denotes the
corresponding random-cluster measure on the infinite graph (Zd

ψ, E
d
ψ ). We write

H = σ (G × F) for the product σ -field of � × 	. For A ∈ H and ψ ∈ �, let Aψ

denote the section {ω ∈ 	 : (ψ,ω) ∈ A}. For B ⊆ Z
d , we write B ↔ ∞ if there

exists b ∈ B that is the endvertex of an infinite open path of the lattice.
Let Va,p,q denote the set of all weak-limit diluted-random-cluster measures

with parameters a, p, q, and let coVa,p,q denote its closed convex hull. It is standard
by compactness that Va,p,q 
= ∅ for a, p ∈ (0, 1) and q ∈ (0,∞), and by taking
a Cesàro average of measures that coVa,p,q contains some translation-invariant
measure. By part (a) of the next theorem, φb

a,p,q ∈ Va,p,q when q ∈ [1, 2].

Theorem 7.2. Let a, p ∈ (0, 1), q ∈ [1, 2], and b ∈ {0, 1}.
(a) The limit diluted-random-cluster measure φb

a,p,q = lim�↑Ld φb
�,a,p,q exists

and satisfies

φ0
a,p,q (A) = �0

a,p,q (µ0
ψ,p,q (Aψ )), A ∈ H,

with a similar equation for the boundary condition 1.
(b) The φb

a,p,q are stochastically increasing in a and p, and φ0
a,p,q ≤st φ ≤st

φ1
a,p,q for φ ∈ coVa,p,q .

(c) We have that

φ1
�,a,p,q (0 ↔ ∞) → φ1

a,p,q (0 ↔ ∞) as � ↑ L
d .

(d) The number L(ω) of infinite open clusters of ω ∈ 	 satisfies: either
φb

a,p,q (L = 0) = 1 or φb
a,p,q (L = 1) = 1.

Theorem 7.3. Let K ∈ [0,∞),� ∈ R, and q ∈ {1, 2}. The limit BCP measure
π s

K ,�,q = lim�↑Ld π s
�,K ,�,q exists, for s = 0, 1, . . . , q.
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The proofs are deferred to the end of this section. We recall from Sec. 3 the
‘usual’ coupling of the diluted-random-cluster and BCP measures, and we shall
see in the proof of the last theorem that the equivalent coupling is valid for the
infinite-volume measures.

The limit measures φb
a,p,q are automorphism-invariant and have the finite-

energy property, the proofs follow standard lines and are omitted. Similarly, the
φb

a,p,q satisfy the comparison inequalities of Theorems 6.1 and 6.3.
We shall consider also the set of DLR measures. Let T� be the sub-σ -field

of H generated by the states of vertices and edges not belonging to the region �.
A probability measure on (� × 	,H) is called a diluted-random-cluster measure
with parameters a, p, q if, for every A ∈ H and every region �,

φ(A | T�)(θ ) = φθ
�,a,p,q (A) for φ-a.e. θ ∈ � × 	.

The set of such measures is denoted byRa,p,q . One way of showing thatRa,p,q 
= ∅
is to prove that some measure in coVa,p,q belongs toRa,p,q . The following theorem
may be proved exactly as for random-cluster measures, see Refs. 26, 28.

Theorem 7.4.

(i) Let a, p ∈ (0, 1) and q ∈ (0,∞). If φ ∈ co Va,p,q and φ is such that
φ(L ∈ {0, 1}) = 1, then φ ∈ Ra,p,q .

(ii) Ra,p,q 
= ∅ for a, p ∈ (0, 1), q ∈ (0,∞).
(iii) Let a, p ∈ (0, 1) and q ∈ [1, 2]. Then φb

a,p,q ∈ Ra,p,q for b = 0, 1.

Finally, we indicate how the convexity of the partition function may be used
to show the uniqueness of certain infinite-volume measures. The proof follows
Ref. 26, which in turn used the method of Ref. 37.

Theorem 7.5. Let q ∈ [1, 2].

(a) For p ∈ (0, 1), the set of points a ∈ (0, 1) at which |Wa,p,q | ≥ 2 is count-
able.

(b) If q ∈ {1, 2}, the set of pairs (a, p) ∈ (0, 1)2 at which |Va,p,q | ≥ 2 may be
covered by a countable family of rectifiable curves of R

2.

Proof of Theorem 7.2.
(a) For simplicity in the following proofs, we shall suppress reference to the

parameters. Consider first the boundary condition 0. Let A ⊆ 	 and B ⊆ � be
increasing cylinder events, and let U ⊆ Z

d be a finite set such that A and B are
defined in terms of the states of vertices in U and of edges joining members of U.
By the discussion in Sec. 5,

φ0
�(A × B) = �0

�(1A(ψ)µ0
�,ψ (B)). (7.6)
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Since H is generated by the set of such events A × B, it suffices to show that

lim
�↑Ld

φ0
�(A × B) = φ0(1A(ψ)µ0

ψ (B)). (7.7)

Let �′ = (V ′, E ′),�′′ be box-regions such that �′ ⊆ � ⊆ �′′ and U ⊆ V ′. By
(7.6) and the monotonicity of φ0

� in �, and of µ0
�,ψ in � and ψ ,

�0
�(1A(ψ)µ0

�′,ψ (B)) ≤ �0
�(A × B) ≤ �0

�′′
(
1A(ψ)µ0

�,ψ (B)
)
.

Take the limits as �′′,�,�′ ↑ Z
d in that order, and use the bounded convergence

theorem to obtain (7.7). A similar argument holds with boundary condition 1, and
with the inequalities reversed.

(b) The necessary properties of monotonicity follow by Theorem 5.12.
(c) This follows the proof of the corresponding statement for random-cluster

measures, see Refs. 3, 28, using part (a) and the representation (7.6) with boundary
condition 0 replaced by 1.

(d) The proof relies on the automorphism-invariance and the finite-energy
property of the marginal measure of φb

a,p,q on 	. This follows standard lines and
is omitted. �

Proof of Theorem 7.3. Consider first the case s = 0. Let �− be the graph
obtained from the box-region � = (V, E) by removing those edges that do not
have both endvertices in V. Let µ be the coupled measure of Theorem 3.7 for �−,
having marginal measures π0

� = π0
�.K ,�,q and φ0

� = φ0
�,a,p,q , where a, p satisfy

(3.6).
Let U ⊂ Z

d be finite, τ ∈ � = {0, 1, 2, . . . , q}Z
d
, and let �U,τ be the BCP

cylinder event {σ ∈ � : σu = τu for u ∈ U }. Let A = AU,τ be the set of θ = (ψ,ω)
∈ � that are compatible with �U,τ , that is, A is the set of θ such that:

(i) ∀u ∈ U, τu = 0 if and only if ψu = 0, and
(ii) ∀u, v ∈ U, τu 
= τv only if u and v are not ω-connected in L

d .

For given θ ∈ A, let l(θ ) be the number of open clusters that intersect U. By the
second observation after Theorem 3.7, subject to a slight abuse of notation, if
V ⊇ U ,

π0
�(�U,τ ) = φ0

�

(
1A(θ )q−l(θ)

)
. (7.8)

Now, φ0
� ⇒ φ0 as � ↑ L

d and, by Theorem 7.2(d), the random variable 1A(θ )q−l(θ)

is φ0-a.s. continuous. Therefore,

lim
�↑Ld

π0
�(�U,τ ) = φ0(1A(θ )q−l(θ)).

Suppose now that s ∈ {1, 2, . . . , q}. Let µ be the coupled measure of Theorem
3.7 on the graph (V +, E), and let µs denote the measure µ conditioned on the
event that σx = s for all x ∈ ∂�.
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The marginal of µs on �V = {1, 2, . . . , q}V is the measure π s
� = π s

�,K ,�,q ,

the marginal on �V × 	E = {0, 1}V × {0, 1}E is φ1
� = φ1

�,a,p,q . The conditional
measure of µs on �V , given the pair (ψ,ω) ∈ �V × 	E , is that obtained as
follows:

(a) ∀v ∈ V , the spin at v is 0 if and only if ψv = 0,
(b) the spins are constant on each given open cluster,
(c) the spins on any open cluster intersecting ∂� are equal to s,
(d) the spins on the other open clusters are independent and uniformly dis-

tributed on the set {1, 2, . . . , q}.
Equation (7.8) becomes

π s
�(�U,τ ) = φ1

�(1A(θ )q− f (θ)). (7.9)

where f (θ ) is the number of finite open clusters that intersect U. [Recall that
φ1

� has support �1
�.] We may write f (θ ) = l(θ ) − N (ω) where N = N (ω) is the

number of infinite open clusters of ω ∈ 	 that intersect U. Clearly, N ∈ {0, 1} for
θ = (ψ,ω) ∈ �1

�, so that

π s
�(�U,τ ) = φ1

�(1Aq N−l )

= φ1
�(1Aq−l ) + (q − 1)φ1

�(1A1{U↔∂�}q−l ). (7.10)

Now, 1Aq−l is φ1-a.s. continuous by Theorem 7.2(d), so that

φ1
�(1Aq−l ) → φ1(1Aq−l ) as � ↑ L

d . (7.11)

It may be proved in a manner very similar to the proof of Theorem 7.2(c) that

φ1
�(1A1{U↔∂�}q−l ) → φ1(1A1{U↔∞}q−l ) as � ↑ L

d . (7.12)

By (7.10)–(7.12) and Theorem 7.2(d),

π s
�(�U,τ ) → φ1(1Aq− f ) as � ↑ L

d ,

and the proof is complete. �

Proof of Theorem 7.5. (a) Let � = (V, E) be a region in L
d with graph

�+ = (V +, E). Let a, p ∈ (0, 1) and q ∈ [1,∞). Consider the normalizing con-
stant Zλ

� = ZDRC
�,λ,a,p,q of the diluted-random-cluster measure on � with boundary

condition λ. Let the vectors (a, p) and (K ,�) satisfy (3.6). By (4.1), we may write

Zλ
� =

∑

θ=(ψ,ω)∈�λ
�

r |Eψ |qk(θ,�)e−�|Vψ |
(

p

1 − p

)|η(ω)∩E |
.

By a standard argument using subadditivity in �, see Refs. 26, 28, the limit

G(�, p, q) = lim
�↑Ld

{
1

|V | log Zλ
�

}
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exists and is independent of λ. The function G is termed pressure.
It is easily seen that

∂

∂�
log Zλ

� = −φλ
�(|Vψ |), (7.13)

∂2

∂2�
log Zλ

� = var(|Vψ |), (7.14)

where var denotes variance with respect to φλ
�,a,p,q . Since variances are non-

negative, G(�, p, q) is a convex function of �. Hence, for fixed p, q, the set of
points � of non-differentiability of G is countable (that is, either finite or countably
infinite). Wherever G is differentiable, its derivative is the limit as � ↑ L

d of the
derivative of |V |−1 log Zλ

�. This implies in turn that

lim
�↑Ld

1

|V |φ
0
�(|Vψ |) = lim

�↑Ld

1

|V |φ
1
�(|Vψ |),

so that φ0(Jx ) = �1(Jx ) for x ∈ Z
d , where Jx is the event that x is open. The

claim follows by (7.1) and a standard ‘FKG’ coupling (see, for example, Prop. 4.6
of Ref. 28).

(b) When q ∈ {1, 2}, we work with the constant ZBCP = ZBCP
�,K ,�,q of (3.2).

By the form of (3.2), ZBCP
�,K ,�,q is a convex function of the pair (K ,�). By (3.8)

and the coupling of Chapter 3,

∂

∂K
log Zb

� = π s
�

(
−|Eσ | + 2

∑

e∈E

δe(σ )

)

= φb
�

(
−|Eψ | + 2

p

∑

e∈E

ω(e)

)
, (7.15)

where s = s(b) satisfies s(0) = 0, s(1) = 1. By Theorem 8.18 of Ref. 20 or The-
orem 2.2.4 of Ref. 42, the set of points of (0, 1)2 at which G is not differentiable
(when viewed as function of (a, p)) may be covered by a countable collection
of rectifiable curves. Suppose G is differentiable at the point (a, p). By part (a),
φ0(Jx ) = φ1(Jx ) for x ∈ Z

d and, in particular, |Eψ |/|V | has the same (almost-sure
and L1) limit as � ↑ L

d under either boundary condition. Therefore, by (7.15),

lim
�↑Ld

1

|V |φ
0
�(|η(ω) ∩ E |) = lim

�↑Ld

1

|V |φ
1
�(|η(ω) ∩ E |),

so that, by translation invariance, φ0(Je) = φ1(Je) for e ∈ E
d , where Je is the event

that e is open. The claim now follows by Theorem 7.2(b), as in part (a). �
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8. PHASE TRANSITIONS

Let d ≥ 2, q ∈ [1, 2], and consider the ‘wired’ diluted-random-cluster mea-
sure φ1

a,p,q on L
d . Several transitions occur as (a, p) increases from (0, 0) to (1, 1),

and each gives rise to a ‘critical surface’ defined as follows.
Let � be a monotonic property of pairs (ψ,ω) ∈ � such that φ1

a,p,q (�)
∈ {0, 1} for all a, p. Let

R(�) = {(a, p) ∈ (0, 1)2 : φ1
a,p,q (�) = 1}, S(�) = R(�) ∩ R(¬�),

where ¬� denotes the negation of �. By Theorem 7.2(b), each R(�) is a mono-
tonic subset of (0, 1)2 with respect to the ordering (a, p) ≤ (a′, p′) if a ≤ a′ and
p ≤ p′. The set S(�) (= S(¬�)) is called the ‘critical surface’ for �.

Of principal interest here are the following three properties:

(i) �icvc, the property that there exists an infinite closed vertex-cluster,
(ii) �iovc, the property that there exists an infinite open vertex-cluster,

(iii) �iec, the property that there exists an infinite open edge-cluster.

It is easily checked that ¬�icvc,�iovc,�iec are increasing and satisfy the zero/one
claim above. Furthermore, �iec ⇒ �iovc.

We do not know a great deal about the critical surfaces of the three proper-
ties above. Just as for percolation, it can occur that R(�icvc) ∩ R(�iovc) 
= ∅ on
any lattice whose critical site-percolation-probability psite

c satisfies psite
c < 1

2 , see
remark (a) following (4.2). When d = 2 however, R(�icvc) ∩ R(�iovc) = ∅ by the
main theorem of Ref. 24.

When q = 2, the critical surfaces of these three properties mark phase tran-
sitions for the Blume–Capel model. Consider the Blume–Capel measure π1

K ,�,2

on L
d , and let a, p satisfy (3.6). Then:

(i) R(�icvc) corresponds to the existence of an infinite vertex-cluster of spin
0,

(ii) R(�iovc) corresponds to the existence of an infinite vertex-cluster whose
vertices have non-zero (and perhaps non-equal) spins,

(iii) R(�iec) corresponds to the existence of long-range order.

Statements (i)–(ii) are clear. Statement (iii) follows by Theorems 3.10 and 7.2(c),
and the remark following Theorem 7.3, on noting by (3.9) that

π1
K ,�,2(σ0 = 1) − 1

2
π1

K ,�,2(σ0 
= 0) = 1

2
φ1

a,p,2(0 ↔ ∞). (8.1)

Some numerical information may be obtained about the critical surfaces by
use of the comparison inequalities proved earlier in this paper. This is illustrated
in the next section, where we concentrate on the two-dimensional Blume–Capel
model.
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This section closes with some notes on the BCP model on L
2 with q = 1, for

use in Sec. 9. As remarked in Secs. 3 and 4, this model may be transformed into the
Ising model with edge-interaction J = 1

4 K and external field h = K − 1
2�, see

(4.3). The phase diagram is therefore well understood and is illustrated in Figure 1
with the parametrization (a, p) of (3.6).

Some remarks concerning Figure 1 follow. The existence of the arcs A, C,
D follow by the established theory of the Ising model with edge-interaction J
and external field h, see Refs. 19, 30, 31, 41 for the case h = 0. The arc A
corresponds to h = 0, J > Jc, where Jc is the critical point of the zero-field model.
Consider the corresponding random-cluster model RCp with edge-parameter π =
1 − (1 − p)−4 and cluster-weighting factor 2. Then RCp has (almost surely) an
infinite open cluster Ip when (a, p) ∈ A. As one deviates rightwards from A with
p held constant (that is, in the direction of positive h), the positive magnetic field
attracts the vertices in Ip, together with at least one half of the finite clusters of
RCp. Write Pp,h for the resulting set of +1 spins. By the previous remark, and
recalling the conditional law of the zero-field Ising model given the random-cluster
configuration, we deduce that the bond percolation model on Pp,h with density

Fig. 1. The phase diagram of the q = 1 BCP model on the square lattice. The model may be transformed
into the Ising model with edge-interaction J and external field h, see (4.3). The arc A ∪ B with equation
a/(1 − a) = 1 − p corresponds to h = 0, and the points to its right (respectively, left) correspond to
h > 0 (respectively, h < 0). There is a ‘tri-critical point’ at (ā, p̄), see (4.6), and the arc A joining this
point to (0, 1) marks a line of first-order phase transitions. The region to the left of A ∪ C is R(�icvc),
and that to the right of A ∪ D is R(�iovc). The hatched region lies in R(�iec), and the lower boundary
of R(�iec) is presumably as marked by E.
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π (< p) possesses an infinite edge-cluster. It follows that the hatched region of
Figure 1 lies in R(�iec).

Similarly, as one deviates leftwards from A with p held constant, the resulting
negative magnetic field attracts the vertices in Ip, and an infinite closed vertex-
cluster forms.

9. THE BLUME–CAPEL PHASE DIAGRAM

Throughout this final section, we consider the Blume–Capel model on the
square lattice L

2, and the associated diluted-random-cluster measure. [Related
but partial conclusions are valid similarly on L

d with d ≥ 3.] The respective
parameters are K ∈ [0,∞),� ∈ R, and the values a, p given at (3.6). The three
putative phases of the models are illustrated in Figure 2. We recall from the last
section the fact that, since d = 2, R(�iovc) ∩ R(�icvc) = ∅.

The three regions of Figure 2 are characterized as follows.

(a) The top region is R(�iec), in which the diluted-random-cluster measure
possesses (almost surely) an infinite open edge-cluster, and the Blume–
Capel model has long-range order.

(b) The left region is R(�icvc), in which the measures possess an infinite
vertex-cluster of zero states.

(c) The central region is R(¬�icvc) ∩ R(¬�iec), in which either all closed
and open vertex-clusters are finite, or there exists an infinite open vertex-
cluster which is too small to support an infinite open edge-cluster. There
is no long-range order.

In the more normal parametrization (1.1) of the Blume–Capel model, there is a
parameter β denoting inverse-temperature, and one takes K = β J,� = βD. If
we hold the ratio D/J fixed and let β vary, the arc of corresponding pairs (a, p)
satisfies

a

1 − a
= (1 − p)D/2J .

As the ratio D/J varies, such arcs are plotted in the gray lines of Figure 2.
The region labelled (c) may be split into two sub-regions depending on

whether or not there exists an infinite open vertex-cluster. We shall not pursue this
distinction here.

A key prediction of Capel for this model is the existence of a so-called tri-
critical point where the three phases meet. The common boundary between the
regions R(�icvc) and R(�iovc) is thought to be a line of first-order phase transitions.
Based on a mean-field analysis, Capel has made the numerical proposals that the
tri-critical point lies on the line a/(1 − a) = (1 − p)

2
3 log 4, and that the line of

first-order transitions arrives at the corner (0, 1) with the same gradient as the
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Fig. 2. The Blume–Capel phase diagram in two dimensions as proposed by Capel. Note the three
phases labelled (a), (b), (c) as in the text. The boundary between (a) and (b) is thought to be a line
of first-order phase transitions, whereas that between (a) and (c) is expected be a line of second-order
transitions. The point at which the the phases are expected to meet is termed the tri-critical point. Moral
support for such a phase diagram is provided by the rigorously known q = 1 diagram of Figure 1.

line a/(1 − a) = 1 − p. The remaining boundary of R(�iec) is thought to mark
a line of second-order phase transitions, and to meet the line a = 1 at the point
p = √

2/(1 + √
2).

The q = 2 random-cluster (Ising) measure on L
2 has critical point

p = √
2/(1 + √

2), which for numerical clarity we shall approximate by 0.586.
Site percolation on L

2 has critical probability psite
c , to which we shall approximate

with the value 0.593. Figure 3 indicates certain regions of the phase diagram about
which we may make precise observations.

For three special vectors (a, p, q), the corresponding diluted-random-cluster
measure φ1

a,p,q provides information concerning the phase diagram. These vectors
are given as follows. For simplicity, we shall refer to the comparison theorems
for measures on finite graphs; the corresponding inequalities for infinite-volume
measures are easily seen to hold, see Sec. 7.

(i) The triple a = 1, p = √
2/(1 + √

2) ≈ 0.586, q = 2. The corresponding
φ1

1,p,2 is a critical random-cluster measure. By Theorem 6.1(a), the shaded
region to the right of the given curve joining (1, 0.586) to (1, 1) lies within
R(�iec). The corresponding Blume–Capel models have long-range order.
By Theorem 6.1(b), no point below the horizontal line p = 0.586 lies in
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Fig. 3. Regions of the phase diagram of the Blume–Capel model on L
2 about which one may make

rigorous statements on the basis of comparisons with other models. The three points referred to in
(i)–(iii) are marked. The narrow vertical strip along the p-axis is a subset of R(�icvc), and the horizontal
strip along the line p = 1 is a subset of R(�iec); see the comments around (9.1) and (9.2).

R(�iec), and the corresponding Blume–Capel models do not have long-
range order.

(ii) The triple a = (1 − psite
c )/(1 + psite

c ) ≈ 0.26, p = 0, q = 2. To the left of
this point on the horizontal line p = 0, the vertex-measure �1

a′,0,2 is a
product measure with density 2a′/(1 + a′) and possessing (almost surely)
an infinite cluster of closed vertices. By Theorem 5.9(ii), �1

a′,0,2 dominates
the vertex-measures on the given arc joining (a′, 0) to (0,1). The interior
of the shaded area is thus a subset of R(�icvc), and the corresponding BCP
measures possess (almost surely) an infinite cluster of 0-spin vertices.

(iii) The vector a = psite
c /(2 − psite

c ) ≈ 0.42, p = 0, q = 2. To the right of this
point on the horizontal line p = 0, the vertex-measure �1

a′,0,2 is a super-
critical product measure with an infinite open vertex-cluster. It follows by
Theorem 5.9(i) that the interior of the region to the right of the vertical
line a = psite

c /(2 − psite
c ) lies in R(�iovc).

Finally, we shall make comparisons involving the diluted-random-cluster
model with parameters (a, p, 2) and the q = 1 models lying on the arc A of
Figure 1. Let ā ≈ 0.029 and p̄ ≈ 0.971 be given by (4.6), and consider the DRC
model with parameters (a2, p2, 1) where a2/(1 − a2) = 1 − p2. Take q2 = 1 and
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q1 = 2 in Theorem 5.9(iii) to find that: if (a, p) ∈ (0, 1)2 satisfies

2

(
a

1 − a

)
(1 − p)2 < (1 − p2)3

for some p2 ≥ max{p, p̄}, then (a, p) ∈ R(�icvc). This holds in particular if

2a

1 − a
< 1 − p and p > p̄. (9.1)

Taken in conjunction with Theorem 5.9(i), this implies that the narrow vertical
strip marked along the p-axis of Figure 3 is a subset of R(�icvc).

Secondly, take q1 = 1, q2 = 2 in Theorem 5.9(iv) to find similarly that: if
(a, p) ∈ (0, 1)2 satisfies

2

(
a

1 − a

)
(1 − p)2 >

(
1 − p

2 − p

)3

and
p

2 − p
> p̄,

then (a, p) ∈ R(�iovc). This occurs if

2a

1 − a
>

8(1 − p)

(2 − p)3
and p >

2 p̄

1 + p̄
. (9.2)

We indicate next that (a, p) ∈ R(�iec) whenever (9.2) holds. Assume (9.2).
By Theorem 5.9(iv), �1

a,p,2 ≥st �1
a1,p1,1

where a1/(1 − a1) = 1 − p1 and p1 =
p/(2 − p) > p. Since the inequalities of (9.2) are strict, we may replace a1 by
a1 + ε for some small ε > 0, and we deduce that �1

a,p,2 dominates (stochasti-

cally) the law, µ+
J say, of the set S of +-spins of the infinite-volume Ising model

with zero external field, edge-interaction J = − 1
8 log(1 − p) > Jc, and + bound-

ary condition. Recalling the coupling between the Ising model and the random-
cluster model, the critical probability pbond

c (S) of bond percolation on S satisfies
pbond

c (S) < π,µ+
J -a.s., where π is the ‘effective’ edge-parameter of the random-

cluster model RCp1 given by

(1 − π )4 = 1 − p1 = 1 − p

2 − p
.

The random-cluster measure with parameters p, 2 on the graph induced by the
open vertex-set of L

2 dominates (stochastically) the product measure with in-
tensity p1 = p/(2 − p). Since p1 ≥ π , there exists an infinite open edge-cluster,
φ1

a,p,2-a.s. That is, (a, p) ∈ R(�iec) if (9.2) holds. This implies as above that the
narrow horizontal strip marked along the line p = 1 in Figure 3 is a subset of
R(�iec).



Random-Cluster Representation of the Blume–Capel Model 319

ACKNOWLEDGMENTS

We thank Aernout van Enter for his advice on the literature. The first author
acknowledges financial support from the Engineering and Physical Sciences Re-
search Council under a Doctoral Training Award to the University of Cambridge.

REFERENCES

1. M. Aizenman, D. J. Barsky and R. Fernández, The phase transition in a general class of Ising-type
models is sharp. Comm. Math. Phys. 47:343–374 (1987).

2. M. Aizenman, J. Bricmont and J. L. Lebowitz, Percolation of the minority spins in high dimensional
Ising models. J. Statist. Phys. 49:859–865 (1987).

3. M. Aizenman, J. T. Chayes, L. Chayes and C. M. Newman, Discontinuity of the magnetization in
one-dimensional 1/|x − y|2 Ising and Potts models. J. Statist. Phys. 50:1–40 (1988).

4. M. Aizenman and R. Fernández, On the critical behavior of the magnetization in high-dimensional
Ising models. J. Statist. Phys. 44:393–454 (1986).

5. K. Alexander, The asymmetric random cluster model and comparison of Ising and Potts models.
Probab. Th. Rel. Fields 120:395–444 (2001).

6. I. Benjamini, R. Lyons, Y. Peres and O. Schramm, Uniform spanning forests. Ann. Probab. 29:1–65
(2001).

7. M. Biskup, C. Borgs, J. Chayes and R. Kotecký, Partition function zeros at first-order phase
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